Página 143

NEUROURBANISMO EM PERSPECTIVA: BASES METODOLÓGICAS E PANORAMA DA PRODUÇÃO EMPÍRICA

NEUROURBANISM IN PERSPECTIVE: METHODOLOGICAL FOUNDATIONS AND OVERVIEW OF EMPIRICAL RESEARCH

Lara Lima Felisberto¹

Resumo

O Neurourbanismo constitui um campo emergente e interdisciplinar dedicado a investigar de que forma o ambiente urbano influencia a atividade cerebral, a saúde mental e o comportamento humano, integrando aportes da neurociência, da psicologia, do urbanismo e da saúde coletiva. Este estudo apresenta uma revisão de escopo de pesquisas empíricas em Neurourbanismo, com o objetivo de mapear os métodos empregados, identificar tendências e apontar limitações metodológicas. A busca bibliográfica, realizada nas bases ScienceDirect, Scopus, Web of Science e PubMed, utilizando o descritor "Neurourbanism", e submetida a critérios de inclusão e exclusão previamente definidos, resultou na seleção de 16 artigos publicados entre 2017 e 2025. Observou-se uma predominância de abordagens quantitativas fundamentadas em neurotecnologias (fMRI, EEG móvel, fNIRS, biossensores) integradas com abordagens qualitativas como questionários e entrevistas. Embora as técnicas biométricas ampliem a precisão das análises, seu uso isolado acarreta riscos de reducionismo. A integração com métodos qualitativos e participativos ainda se encontra em estágio inicial, mas revelase essencial para captar dimensões socioculturais e subietivas. Conclui-se que a triangulação metodológica, associada à padronização de protocolos e ao rigor ético, é imprescindível para o avanço de uma compreensão integrada dos efeitos do ambiente urbano sobre o bem-estar psicológico e neurológico.

Palavras-chave: Urbanismo; Revisão de escopo; Saúde mental urbana.

Abstract

Neurourbanism is an emerging interdisciplinary field that examines how urban environments shape brain activity, mental health, and human behavior, drawing on insights from neuroscience, psychology, urban planning, and public health. This study presents a scoping review of empirical research in neurourbanism, aiming to map methodological approaches, identify trends, and highlight limitations. A systematic search was conducted in ScienceDirect, Scopus, Web of Science, and PubMed using the descriptor "neurourbanism," applying predefined inclusion and exclusion criteria. Sixteen articles published between 2017 and 2025 were included. Findings reveal a predominance of quantitative approaches grounded in neurotechnologies (fMRI, mobile EEG, fNIRS, biosensors), often complemented by qualitative methods such as surveys and interviews. While biometric techniques enhance analytical precision, their isolated use risks reductionism. The integration of qualitative and participatory approaches remains incipient but is crucial for capturing sociocultural and subjective dimensions. The review concludes that methodological triangulation, combined with standardized protocols and rigorous ethical frameworks, is essential to advancing a comprehensive understanding of how urban environments affect psychological and neurological well-being.

Keywords: Urban planning; Scoping review; Urban mental health.

1. Introdução

¹ Doutoranda no Programa de Pós-Graduação em Arquitetura e Urbanismo (PósARQ) na Universidade Federal de Santa Catarina (UFSC). Arquiteta e Urbanista. E-mail: laralimafelisberto@gmail.com

Atualmente, cerca de metade da população mundial vive em áreas urbanas. Em 1950, essa proporção era de apenas um terço e, segundo projeções, deverá atingir aproximadamente 70% até 2050 (Adli *et al.*, 2017). No Brasil, o processo de urbanização é ainda mais intenso: dados do Instituto Brasileiro de Geografia e Estatística (IBGE) indicam que, em 2022, aproximadamente 87% dos brasileiros residiam em cidades, o que representa um crescimento médio anual de cerca de 0,82% em relação a 2010 (IBGE, 2023).

Esses indicadores, em âmbito nacional e internacional, evidenciam a expansão contínua da urbanização, consolidando o espaço urbano como principal *locus* de vida da população. Se, por um lado, a cidade oferece oportunidades, infraestrutura e acesso a serviços, por outro, sua expansão acelerada impõe múltiplos desafios, entre os quais se destacam a sobrecarga da infraestrutura urbana e os impactos significativos sobre a saúde mental dos indivíduos.

Nesse sentido, o Neurourbanismo, um campo emergente e multidisciplinar, dedica-se ao estudo das interações entre a neurociência e o urbanismo. Seu foco está em compreender como o ambiente urbano influencia o funcionamento do cérebro, a saúde mental, as emoções e o comportamento humano. Para isso, integra conhecimentos do urbanismo, da geografia, da psicologia, da saúde coletiva, do planejamento urbano, entre outras áreas, promovendo uma abordagem verdadeiramente interdisciplinar (Felisberto; Albuquerque, 2025).

Levando em conta que o campo do Neurourbanismo ainda é emergente, as pesquisas na área não estão plenamente consolidadas, sendo muitas delas de natureza experimental. Diante disso, este artigo tem como objetivo realizar uma revisão de escopo dos estudos empíricos sobre o tema, ou seja, trabalhos que se baseiam em observações, experiências ou na coleta de dados no mundo real, sejam de natureza quantitativa, qualitativa ou mista. Busca-se identificar os métodos aplicados nas investigações em Neurourbanismo, evidenciar tendências recentes e analisar os desafios que ainda se impõem à consolidação metodológica do campo.

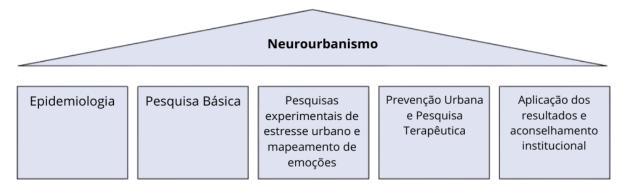
2. Doenças mentais e espaço urbano

No estudo "Does the city make us ill? The effect of urban stress on emotions, behavior, and mental health", Adli e Schöndorf (2020) apresentam um panorama atualizado da saúde mental em contextos urbanos, destacando o papel central do

estresse urbano, apontado pelos autores como a principal causa das doenças mentais associadas à vida nas cidades contemporâneas.

De acordo com o estudo, o estresse urbano configura-se como uma resposta neurobiológica crônica, desencadeada pela exposição contínua a estímulos ambientais, sociais e sensoriais característicos de áreas densamente povoadas. Esses estímulos relacionam-se tanto à alta densidade social quanto ao isolamento subjetivo, quando o indivíduo experimenta solidão mesmo em meio a grandes fluxos de pessoas. Evidências de neuroimagem indicam que moradores de cidades apresentam maior reatividade da amígdala e de regiões corticais envolvidas no processamento de ameaças, sugerindo maior sensibilidade a esse tipo de estresse. Além disso, segundo Adli e Schöndorf (2020), indivíduos que cresceram em ambientes urbanos podem apresentar alterações estruturais em áreas cerebrais responsáveis pela regulação do estresse.

Entre as doenças mais frequentemente associadas ao estresse urbano destacam-se a depressão, a ansiedade e a esquizofrenia, todas já comprovadamente mais prevalentes entre moradores de áreas urbanas. Alguns grupos se mostram particularmente vulneráveis, como migrantes e minorias étnicas em bairros pouco diversos, idosos que vivem sozinhos, moradores de bairros pobres e indivíduos em situação socioeconômica desfavorável. Outros fatores urbanos, como ruído, poluição e mudanças rápidas nas cidades (gentrificação, aumento de aluguéis e falta de espaços públicos de lazer acessíveis), também intensificam a exposição ao estresse (Adli; Schöndorf, 2020).


Dessa forma, torna-se imprescindível a consolidação do Neurourbanismo como campo de estudo, de modo a possibilitar o aprofundamento das questões urbanas e a construção de soluções e estratégias de prevenção cada vez mais claras e eficazes.

3. Neurourbanismo: disciplina acadêmica e pesquisa científica

O Neurourbanismo surge como uma tentativa de consolidar os estudos sobre a relação entre o cérebro humano e a vida urbana, dado que os métodos anteriormente empregados, sobretudo em campos como a psicologia ambiental, eram majoritariamente qualitativos. A proposta, no entanto, não consiste em hierarquizar métodos, atribuindo maior valor ao quantitativo em detrimento do qualitativo, mas sim em reconhecer que a triangulação metodológica é essencial para alcançar maior solidez investigativa.

Nesse sentido, Adli *et al.* (2017) estruturam o Neurourbanismo como uma disciplina apoiada em pilares interconectados, que conferem robustez à sua fundamentação teórica e prática (Figura 1).

Figura 1 – A estrutura do Neurourbanismo como disciplina acadêmica.

Fonte: Traduzido pela autora de Adli et al. (2017).

Nessa estrutura, o primeiro passo consiste em identificar a epidemiologia, isto é, mapear o panorama geral das doenças mentais associadas à vida urbana e compreender os dados que descrevem sua ocorrência. Em seguida, realiza-se uma pesquisa básica voltada à análise dessas doenças e de sua relação com o espaço urbano. Posteriormente, avançam-se para as pesquisas experimentais, que investigam o estresse urbano e o mapeamento das emoções em campo, por meio de métodos e protocolos sistematizados, permitindo obter resultados mais precisos acerca do que se manifesta em determinado contexto urbano (Adli *et al.*, 2017).

Com base nesses resultados, torna-se possível elaborar protocolos de prevenção urbana e de pesquisa terapêutica, voltados à aplicação dos dados coletados e à mitigação das doenças mentais associadas ao espaço urbano. Em seguida, os achados podem ser ampliados para a esfera populacional, subsidiando um processo de aconselhamento institucional, momento em que a pesquisa acadêmica dialoga com instituições públicas, apresentando evidências empíricas que orientam ações de melhoria e mitigação (Adli *et al.*, 2017).

Esse movimento evidencia, de forma ainda mais clara, a interdisciplinaridade e a complexidade que caracterizam o campo do Neurourbanismo: é justamente a interação entre setores acadêmicos e institucionais, somada à diversidade de áreas do conhecimento, que potencializa o sucesso na mitigação dos impactos da vida urbana sobre a saúde mental.

4. Protocolo de busca

A presente pesquisa consiste em uma revisão de escopo, modalidade de revisão que tem como objetivo mapear a produção científica sobre um determinado tema, identificando conceitos-chave, lacunas de conhecimento, tipos de evidência e práticas de pesquisa, sem necessariamente avaliar a qualidade dos estudos incluídos (Tricco *et al.*, 2018).

Esta investigação concentrou-se em responder a três perguntas principais:

- (1) Quais são os principais métodos utilizados nas pesquisas empíricas sobre Neurourbanismo?
- (2) Quais são os padrões metodológicos recorrentes e as tendências inovadoras?
 - (3) Quais são as principais vantagens e limitações dos métodos utilizados?

As buscas foram realizadas nos quatro principais portais de periódicos científicos: *ScienceDirect, Scopus, Web of* Science e *PubMed*. Nestes repositórios, foi utilizado o termo de busca "*Neurourbanism*", com o intuito de localizar estudos que abordassem o tema de forma ampla, com atenção especial aos aspectos metodológicos empregados.

Para a seleção dos estudos, foram definidos critérios de inclusão que assegurassem a relevância temática, a acessibilidade do conteúdo e a presença de dados empíricos. Foram considerados elegíveis os artigos originais, com texto completo disponível em acesso aberto, publicados em periódicos científicos, e que adotassem metodologias empíricas, ou seja, que realizassem coleta e análise de dados observacionais, experimentais ou mistos. Foram excluídas revisões de literatura, ensaios teóricos e editoriais, por não apresentarem procedimentos empíricos de investigação.

O gerenciamento e a organização dos artigos coletados durante o processo de busca foram realizados com o auxílio do software *EndNote Online*®, que permitiu o armazenamento, categorização e controle das referências selecionadas.

Na busca inicial, foram identificados 47 artigos após a remoção de duplicatas. Em uma triagem por título e resumo, 13 estudos foram excluídos por não se enquadrarem no escopo da pesquisa. Em seguida, 18 artigos foram excluídos após leitura integral, por não atenderem aos critérios de inclusão previamente estabelecidos. Ao final do processo, foram selecionados 16 artigos, que compõem

este trabalho. A Figura 1 ilustra esse protocolo de busca e o Quadro 1 detalha os estudos coletados.

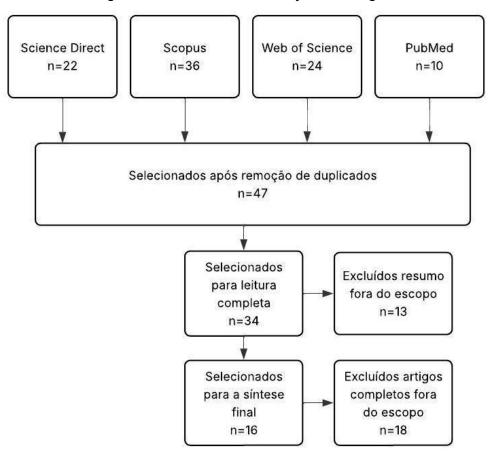


Figura 1 – Protocolo de seleção de artigos.

Fonte: Elaboração própria, 2025.

Quadro 1 – Síntese dos estudos selecionados.

Título	Autor/An o	Periódico	Objetivo	Procedimentos metodológicos
Using functional	Tang et	Landscape	Comparar o	fMRI (ressonância
Magnetic	al. (2017)	and Urban	valor	magnética funcional),
Resonance		Planning	restaurador de	escala de
Imaging (fMRI) to			ambientes	restauração
Analyze Brain			(urbano,	percebida
Region Activity			floresta, água,	
			montanha) e	

ISSN 2525-3204				
When Viewing			sua relação	
Landscapes			com atividade	
			cerebral.	
Housing Stress	Li e Liu	Cities	Investigar	Questionários
and Mental Health	(2018)		estresse	
of Migrant			habitacional e	
Populations			saúde mental	
			de migrantes.	
The Impact of	Neale et	Cities &	Compreender	EEG
Walking in	al. (2020)	Health	o impacto de	(Eletroencefalograma
Different Urban			caminhar em) móvel em
Environments on			diferentes	caminhada
Brain Activity in			ambientes	
Older People			urbanos na	
			atividade	
			cerebral de	
			idosos.	
Biosocial Borders:	Brigstocke	Transactions	Investigar	Biossensores,
Affective	et al.	of the	estresse e	entrevistas
debilitation and	(2023)	Institute of	resiliência de	
resilience among		British	mulheres em	
women living in a		Geographers	áreas	
violently bordered			violentas.	
favela				
Residential Green	Dimitrov-	Scientific	Analisar o	fMRI
Space and Air	Discher et	Reports	efeito de áreas	
Pollution	al. (2022)		verdes e	
			poluição em	
			estresse	
			social.	
Restoring The	Asim et al.	Building and	Estudar efeitos	Questionários, EEG
Mind: A	(2023)	Environment	do ambiente	móvel, segmentação
	•	•		

13314 2323-3204				
neuropsychologic			universitário	de cores por IA,
al investigation of			na saúde	inventário de
university campus			mental.	variáveis do ambiente
built environment				construído.
aspects for				
student well-being				
Perceptions of	Qin, Dong	Computers,	Associar	Viagem experimental
Space and Time	e Huang	Environment	experiências	no transporte, fMRI
of Public	(2023)	s and Urban	em transporte	
Transport Travel		Systems	público à	
Associated With			atividade	
Human Brain			cerebral.	
Activities: A case				
study of bus travel				
in Beijing				
Exploring the	Elsayed et	Archnet-	Avaliar	EEG, realidade virtual
restorative	al. (2024)	IJAR	respostas	
environments in			neurais a	
Bratislava using			ambientes	
EEG and VR: A			urbanos	
Neurourbanism			simulados em	
approach			realidade	
			virtual.	
Cool colors	Gu et al.	Urban	Avaliar como	Escala de
promote a	(2024)	Analytics	cor e padrão	restauração
restorative		and City	de murais	percebida
sidewalk		Science	influenciam	
experience: A			humor e	
study on effects of			restauração.	
color and pattern				
design of ground				
murals on mood				
•				

states and perceived restorativeness using 2D street view images	
restorativeness using 2D street	
using 2D street	
view images	
Using Artificial Gu, Roe e Journal of Explorar Realidade virtual,	
Ground Murals to Knoll Environment efeitos de escala de	
Promote (2024) al murais restauração	
Restorative Psychology urbanos em percebida,	
Sidewalk experiências biossensores	
Experiences: restauradoras.	
Effects of colors	
and patterns on	
mood, perceived	
restorativeness,	
and heart rate in	
virtual reality	
Depression or Peng et Frontiers of Analisar o Entrevistas, EEG,	
recovery? A study al. (2025) Architectural impacto do observação direta	
of the influencing Research ambiente biossesnsores	
elements of urban viário na	
street saúde mental.	
environments to	
alleviate mental	
stress	
Beyond Built Sander et Journal of Avaliar o Questionários,	
Density: From al. (2024) Environment impacto da rastreamento ocul	ar
coarse to fine- al densidade remoto	
grained analyses	
of emotional experiências	
experiences in emocionais.	

urban					
environments					
Neurourbanism	Abed et	Int. J. of	Avaliar como o	Questionários	
and its Influence	al. (2025)	Low-carb	Neurourbanis		
on Public Outdoor		Technology	mo pode		
Spaces and			melhorar a		
Mental Health			saúde mental.		
Neighborhood	Harris et	Cities	Relacionar	Questionários	
Characteristics on	al. (2025)		características		
Environmental			do bairro ao		
Literacy in Urban			nascimento		
Youth: A case			com sintomas		
from Detroit			psicóticos.		
Metropolitan Area,					
USA					
Urban Built	Mehta et	Asian	Estudar a	Observação direta,	
Density and Brain	al. (2025)	Journal of	influência do	fMRI	
Connectivity		Psychiatry	ambiente		
Predict			urbano e do		
Antipsychotic			gênero na		
Response in a			esquizofrenia.		
Sex-specific					
Manner in					
Schizophrenia					
Neurological	Xu et al.	Frontiers of	Investigar	fMRI, biossensores,	
Benefits of Third	(2025)	Architecture	efeitos dos	entrevistas	
Places for Young		Research	"third places"		
Adults in Healthy			no bem-estar		
Urban			dos jovens.		
Environments					
Fonte: Elaboração própria, 2025.					

Fonte: Elaboração própria, 2025.

5. Resultados e Discussões

A análise dos 16 estudos que compõem este trabalho evidenciou uma notável heterogeneidade metodológica, característica que reflete a natureza interdisciplinar e ainda em processo de amadurecimento epistemológico do campo do Neurourbanismo, especialmente no que diz respeito à integração de métodos qualitativos.

Embora se observe uma multiplicidade de abordagens, é evidente a predominância de métodos quantitativos ancorados em tecnologias neurocientíficas de alta precisão, tais como a ressonância magnética funcional (fMRI) e a eletroencefalografia móvel (EEG), presentes em mais de 50% dos estudos, frequentemente combinadas com questionários. O uso de biossensores (monitoramento de frequência cardíaca, respostas galvânicas) e rastreamento ocular também foi identificado, embora com menor frequência.

Nos trabalhos mais recentes (2023–2025) observou-se a incorporação de realidade virtual para simular cenários urbanos e naturais de forma controlada, permitindo mensuração simultânea de respostas neurais e fisiológicas. Além disso, cresce o emprego de abordagens multimétodo, que integram dados objetivos (neuroimagem, fisiologia) e qualitativos (questionários, entrevistas).

Em relação ao tratamento dos dados, nota-se que análises estatísticas foram amplamente utilizadas, abrangendo desde comparações entre grupos (ANOVA, testes t) até modelagens de relações complexas (regressão múltipla e técnicas de modelagem estatística avançada). Em muitos casos, essas abordagens foram integradas a análises multivariadas, o que permitiu explorar associações entre variáveis ambientais, fisiológicas e subjetivas.

Do ponto de vista das tendências emergentes, três movimentos metodológicos merecem destaque: (1) A crescente sofisticação na integração entre tecnologias de neuroimagem e ambientes digitais imersivos; (2) O fortalecimento de abordagens multimétodo, combinando medições objetivas e subjetivas; (3) A valorização de estratégias contextuais, como a observação direta e a análise de restauração percebida, que aproximam a coleta de dados da realidade urbana vivida.

Todavia, as investigações analisadas expõem um conjunto de limitações metodológicas que demandam reflexão crítica. Estudos conduzidos em ambientes laboratoriais ou em simulações virtuais, embora metodologicamente rigorosos, apresentam restrições significativas em termos de generalização para os contextos

urbanos reais, que são intrinsecamente dinâmicos, multifatoriais e marcados por complexidades sociais, culturais e ambientais. De forma semelhante, o uso de tecnologias portáteis em pesquisas de campo enfrenta desafios técnicos, tais como interferências eletromagnéticas, artefatos de movimento e limitações logísticas associadas à coleta e à sincronização de dados multimodais (Neale *et al.*, 2020; Asim *et al.*, 2023).

Somam-se a essas dificuldades os desafios éticos e de privacidade decorrentes da coleta de dados biométricos em espaços públicos, os quais demandam protocolos rigorosos de consentimento informado e uma vigilância constante sobre as implicações sociais do uso dessas tecnologias (Pykett *et al.*, 2020). A ausência de protocolos metodológicos padronizados representa outra fragilidade considerável, uma vez que a diversidade de abordagens, embora enriquecedora, compromete a comparabilidade entre estudos e a reprodutibilidade dos achados, elementos essenciais para a maturidade científica do campo.

Diante desse cenário, a triangulação metodológica emerge como um imperativo epistemológico no Neurourbanismo contemporâneo. A integração entre dados neurofisiológicos, evidências contextuais e narrativas subjetivas não apenas potencializa a densidade analítica das investigações. Tal abordagem, ao reconhecer a indissociabilidade entre os processos biológicos, as dinâmicas espaciais e as vivências sociais, propicia uma compreensão mais holística, crítica e situada dos efeitos do ambiente urbano sobre o bem-estar psicológico e cognitivo dos indivíduos. O Quadro 2 sintetiza os métodos utilizados nos estudos, bem como suas vantagens e limitações.

Quadro 2 – Síntese dos métodos empregados pelos estudos.

Método	Estudos	Vantagens	Limitações
fMRI	Tang et al.	Alta resolução	Alto custo; baixa
	(2017); Dimitrov-	espacial; identifica	portabilidade;
	Discher et al.	áreas cerebrais	ambientes
	(2022); Qin,	específicas ativadas	controlados pouco
	Dong e Huang		realistas.
	(2023); Mehta et		

	1	Т	1
	al. (2025); Xu et al. (2025).		
Biossensores	Neale et al. (2020); Asim et al. (2023); Elsayed et al. (2024); Peng et al. (2025). Brigstocke et al. (2023); Gu, Roe e Knoll (2025); Peng et al.	Portátil; boa resolução temporal; permite coleta em campo. Medem respostas fisiológicas não conscientes; aplicáveis em campo.	
	(2025); Xu et al. (2025).		calibração rigorosa.
Rastreamento	Sander et al.	Precisão na análise	Necessita controle
ocular	(2024).	da atenção visual; útil	de movimento;
		em estudos de	equipamento
		percepção urbana.	especializado.
Realidade Virtual	Elsayed et al.	Controla variáveis	Pode induzir ciber-
(RV)	(2024); Gu, Roe	ambientais; alta	enjoo; nem sempre
	e Knoll (2025);	imersão.	reflete condições reais.
Escala de	Tang et al.	Acessível; possibilita	Baseia-se em
restauração	(2017); Gu <i>et al.</i>	captar a percepção	autorrelato; maior
percebida	(2024); Gu, Roe	subjetiva de	suscetibilidade a
	e Knoll (2025);	restauração ambiental.	vieses de resposta.
Segmentação de	Asim et al.	Identifica padrões	Dependência de
cores por	(2023);	ambientais de forma	algoritmos; requer
Inteligência		automatizada; amplia	validação cruzada
Artificial (IA)			

		a análise visual de	com dados
		cenários urbanos.	empíricos.
Inventário de	Asim et al.	Permite	Exige padronização
variáveis do	(2023);	caracterização	de indicadores; pode
ambiente		detalhada do	não capturar
construído		ambiente físico;	variáveis subjetivas.
		auxilia na análise	
		comparativa entre	
		locais.	
Observação direta	Peng et al.	Favorece a	Baixa padronização;
	(2025); Mehta et	contextualização dos	sujeito à
	al. (2025)	dados; possibilita	interpretação do
		captar dinâmicas	pesquisador.
		urbanas em tempo	
		real.	
Viagem/caminhada	Neale et al.	Aproxima a coleta da	Difícil controle de
experimental	(2020); Qin,	experiência urbana	variáveis externas;
	Dong e Huang	real; integra	limitações logísticas.
	(2023).	movimento corporal e	
		percepção.	
Questionários e	Li e Liu (2018);	Capturam	Subjetividade na
entrevistas	Brigstocke et al.	significados e	análise; menor
	(2023); Asim et	contextos	comparabilidade
	al. (2023); Peng	socioculturais;	entre estudos.
	et al. (2025);	ampliam	
	Abed et al.	compreensão.	
	(2025); Harris <i>et</i>		
	al. (2025); Xu et		
	al. (2025).		
	Fonto: Elabora	acão própria, 2025.	

Fonte: Elaboração própria, 2025.

6. Conclusões

Esta revisão de escopo demonstra que, apesar do rápido avanço tecnológico, o Neurourbanismo ainda carece de maturidade metodológica. O predomínio de técnicas biométricas de alta precisão reflete o esforço de objetivar respostas humanas a estímulos urbanos, mas também revela fragilidades quando desconectadas de seus contextos socioculturais. Para que o campo evolua, é imprescindível adotar a triangulação metodológica como princípio central, articulando medições neurofisiológicas com abordagens qualitativas e análise contextual. Tal integração permite superar a dicotomia entre objetividade tecnológica e subjetividade experiencial, produzindo interpretações mais densas e aplicáveis.

Além disso, urge o desenvolvimento de protocolos padronizados para coleta, análise e interpretação de dados, o que fortalecerá a comparabilidade e a reprodutibilidade dos estudos. Essas diretrizes devem surgir de esforços colaborativos internacionais e contemplar também salvaguardas éticas robustas, especialmente na coleta de dados biométricos em espaços públicos.

No campo aplicado, os achados indicam que intervenções urbanísticas baseadas em evidências neurocientíficas podem potencializar a saúde mental urbana, desde que orientadas por princípios de acessibilidade, inclusão e convivialidade. Em síntese, o avanço do Neurourbanismo depende de equilibrar precisão biométrica e sensibilidade humana, garantindo que a produção de conhecimento sirva não apenas à inovação tecnológica, mas também à promoção de cidades mais justas, saudáveis e integradoras.

Referências

ABED, A. *et al.* Neurourbanism and its influence on public outdoor spaces and mental health. **International Journal of Low-Carbon Technologies**, v. 20, p. 249-268, 2025. DOI: https://doi.org/10.1093/ijlct/ctaf00.

ADLI, M. *et al.* Neurourbanism: towards a new discipline. **The Lancet Psychiatry**, v. 4, n. 3, p. 183–185, 2017. DOI: https://doi.org/10.1016/S2215-0366(16)30371-6.

ADLI, M.; SCHÖNDORF, J. Macht uns die Stadt krank? Wirkung von Stadtstress auf Emotionen, Verhalten und psychische Gesundheit. **Bundesgesundheitsbl**, v. 63, p. 979-986, 2020. DOI: https://doi.org/10.1007/s00103-020-03185-w.

ASIM, F. *et al.* Restoring The Mind: A neuropsychological investigation of university campus built environment aspects for student well-being. **Building and Environment**, v. 244, 2023. DOI: https://doi.org/10.1016/j.buildenv.2023.110810.

BRIGSTOCKE, J. *et al.* Biosocial borders: Affective debilitation and resilience among women living in a violently bordered favela. **Transactions of the Institute of British Geographers**, v. 48, p. 587-602, 2023. DOI: https://doi.org/10.1111/tran.12601.

DIMITROV-DISCHER, A. *et al.* Residential green space and air pollution are associated with brain activation in a social-stress paradigm. **Scientific Reports**, v. 12, n. 10614, 2022. DOI: https://doi.org/10.1038/s41598-022-14659-z.

ELSAYED, M. *et al.* Exploring the restorative environments in Bratislava using EEG and VR: a neuro-urbanism approach. **Archnet-IJAR International Journal of Architectural Research**, 2024. DOI: https://doi.org/10.1108/ARCH-02-2024-0068.

FELISBERTO, L. L.; ALBUQUERQUE, C. F. H. Neurourbanismo e qualidade de vida nas cidades. *In:* POMPERMAIER, J. P. L.; FOGAÇA, I. R.; FELISBERTO, L. L.; CESCON, S. M.; SANTOS, J. T. (Org.). **Neuroarquitetura: projetando ambientes para os desafios contemporâneos.** 1. ed. Rio de Janeiro: Rio Books, 2025. p. 224-238.

GU, L. *et al.* Cool colors promote a restorative sidewalk experience: a study on effects of color and pattern design of ground murals on mood states and perceived restorativeness using 2D street view images. **Environment and Planning B: Urban Analytics and City Science**, 2024. DOI:

https://doi.org/10.1177/23998083241272100.

GU, L.; ROE, J.; KNÖLL, M. Using artificial ground murals to promote restorative sidewalk experiences: effects of colors and patterns on mood, perceived restorativeness, and heart rate in virtual reality. **Journal of Environmental Psychology**, v. 102, 2025. DOI: https://doi.org/10.1016/j.jenvp.2025.102544.

HARRIS, N. C.; GONZÁLEZ, G.; VRLA, S. Neighborhood characteristics on environmental literacy in urban youth: a case from Detroit Metropolitan Area, USA. **Cities**, v. 163, p. 106042, 2025. DOI: https://doi.org/10.1016/j.cities.2025.106042.

IBGE – Instituto Brasileiro de Geografia e Estatística. **Censo 2022:** 87% da população brasileira vive em áreas urbanas. Agência de Notícias IBGE, 22 dez.

2023. Disponível em: https://agenciadenoticias.ibge.gov.br/agencia-noticias/2012-agencia-de-noticias/noticias/41901-censo-2022-87-da-populacao-brasileira-vive-emareas-urbanas. Acesso em 4 fev. 2025.

LI, J.; LIU, Z. Housing stress and mental health of migrant populations in urban China. **Cities**, v. 81, p. 172-179, nov. 2018. DOI: https://doi.org/10.1016/j.cities.2018.04.006

MEHTA, U. M. *et al.* Urban built density and brain connectivity predict antipsychotic response in a sex-specific manner in Schizophrenia. **Asian Journal of Psychiatry**, v. 111, p. 104631, 2025. DOI: https://doi.org/10.1016/j.ajp.2025.104631.

NEALE, C. *et al.* The impact of walking in different urban environments on brain activity in older people. **Cities and Health**, v. 4, n. 1, p. 94-106, 2020. DOI: https://doi.org/10.1080/23748834.2019.1619893.

PENG, H. *et al.* Depression or recovery? A study of the influencing elements of urban street environments to alleviate mental stress. **Frontiers of Architectural Research**, v. 14, n. 3, p. 846-862, 2025. DOI: https://doi.org/10.1016/j.foar.2024.11.006.

PYKETT, J.; OSBORNE, T.; RESCH, B. From urban stress to Neurourbanism: how should we research city well-being? **Annals of the American Association of Geographers**, v. 110, n. 6, p. 1936-1951, 2020. DOI: https://doi.org/10.1080/24694452.2020.1736982.

QIN, T.; DONG, W.; HUANG, H. Perceptions of space and time of public transport travel associated with human brain activities: a case study of bus travel in Beijing. **Computers, Environment and Urban Systems**, v. 99, 2023. DOI: https://doi.org/10.1016/j.compenvurbsys.2022.101919

SANDER, I. et al. Beyond built density: from coarse to fine-grained analyses of emotional experiences in urban environments. **Journal of Environmental Psychology**, v. 96, 2024. DOI: https://doi.org/10.1016/j.jenvp.2024.102337.

TANG, I.C. *et al.* Using functional magnetic resonance imaging (fMRI) to analyze brain region activity when viewing landscapes. **Landscape and Urban Planning**, v. 162, p. 137-144, 2017. DOI: https://doi.org/10.1016/j.landurbplan.2017.02.007.

Revista Infinity Vol. 10, 2025 ISSN 2525-3204

TRICCO, A. C. *et al.* PRISMA Extension for Scoping Reviews (PRISMA-ScR): checklist and explanation. **Annals of Internal Medicine**, Philadelphia, v. 169, n. 7, p. 467–473, 2018. DOI: https://doi.org/10.7326/M18-0850.

XU, L. *et al.* Neurological benefits of third places for young adults in healthy urban environments. **Frontiers of Architectural Research**, 2025. DOI: https://doi.org/10.1016/j.foar.2025.01.008.